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A self-consistent procedure is presented for the determination of the properties of a many-f ermion system, 
taking into account all two-particle correlations. We consider a system of N fermions, interacting through 
two-body forces and write the wave function in the form, & — Ŝ o-f 2#/<2) (ij), where ^ 0 is a determinant of 
one-particle wave functions and/ ( 2 )(#) is an antisymmetrized product of (N—2) one-particle functions and 
of one two-particle function. By introducing two-particle functions for each electron pair, all two-particle 
correlations are taken into account. It is shown that for the best one- and two-particle functions a system of 
coupled integrodifferential equations can be derived. These equations are derived by varying the expectation 
value of the Hamiltonian with respect to the one- and two-particle functions, taking into account the 
normalization and orthogonality as subsidiary conditions. After eliminating the Lagrangian multipliers, we 
have obtained the following result. We obtained N one-particle equations for the N one-particle wave 
functions and one-particle orbital parameters. These equations are characterized by a potential (and ex
change operator) in which, besides the Hartree-Fock type potential terms, there are also the potentials arising 
from the two-particle functions, where the latter occur in diagonal, as well as in nondiagonal form. For the 
two-particle functions and the orbital parameters associated with them, we have obtained two-particle equa
tions in which the equation for the function faj contains all one-particle functions and all the other two-
particle functions. It is shown that the system of coupled one- and two-particle equations can be solved with 
a self-consistent procedure. The method can be applied to systems with any number of particles. 

Here the first term which represents the independent-
particle approximation is a Slater determinant built 
from the one-particle orbitals <pi, <p2, • • •, <PN : 

*„= Ll/(NVml{ *>i(ffi)*>i(fc)• • • <PN(q*)} , (1.2) 

where A is the antisymmetrizer operator and qi stands 
for the space and spin coordinates of the ith particle. 
The subsequent terms of (1.1) are introduced in order 
to take into account the correlation between the 
particles. This is done in such a way that the correlation 
effects are decomposed into 2-particle, 3-particle, • • •, 
^-particle correlations which are represented by the 
2nd, 3rd, •••, ^th sums of (1.1), respectively. The 
function f^(ij) occurring in the second term of (1.1) 
is defined in the following way: 

= [l/(^D1/4]{^(«0^(«2)- • - ^ i W m i W ' • • 
X (pj-i(qj-i)<pj+1(qj+1) • • • ptf(#i\r)0tffo#)} > (I-3) 

where 4>n(c[iq2) is an arbitrary, antisymmetric two-
particle function. As we see from (1.2) and (1.3), the 
2-particle correlation is introduced into the wave 
function by replacing the one-particle orbitals cpi and 
<pj by the two-particle function <£#. The second term of 
(1.1) is a sum for all particle pairs, therefore it contains 
all 2-particle correlations. The functions / (3)- • -/<ivr), 
which represent higher order correlation effects6 are 
defined similarly to /(2). 

The summations in the 3rd- • -nth. terms of (1.1) are 
to be taken over all possible 3-particle, • * •, w-particle 
combinations; therefore, they contain all many-
electron correlations. 

6 We call the function /<»> a correlated wave function of nth 
order (2Sn^N). 
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I. INTRODUCTION 

THE first step toward the solution of the quantum-
mechanical many-body problem is the independ

ent-particle (or Hartree-Fock) approximation.1 In this 
approximation the wave function of the system is 
written as an antisymmetrized product of one-particle 
wave functions which means that the correlation 
between the particles is not taken into account. In 
order to introduce correlation into the treatment of 
the quantum-mechanical many-body problem a new 
theory has been developed by this writer.2-5 In this 
"theory of correlated wave functions" the solution of 
the Schrodinger equation for iV-interacting particles is 
written in the form 

*=*O+E /(2)(*/)+x: fwm+• • • 
! %il +/<*>(i,2,...#). (i.i) 

* Present address: Department of Physics, Fordham University, 
New York, New York. 

1 D. R. Hartree, Proc. Cambridge Phil. Soc. 24, 89, 111 (1928); 
V. Fock, Z. Physik 61, 126 (1930), 62, 795 (1930); J. C. Slater, 
Phys. Rev. 35, 210 (1930). 

2 L. Szasz, Z. Naturforsch. 14a, 1014 (1959); 15a, 909 (1960). 
3 L. Szasz, Phys. Rev. 126, 169 (1962). 
4 L. Szasz, J. Math. Phys. 3, 1147 (1962); Phys. Letters 3, 

263 (1963). 
5 In recent years, considerable attention has been given to the 

problem of particle correlation in the quantum-mechanical many-
body problem. We do not attempt to compare our method with 
the other methods which have been put forward in recent years. 
I t should be noted, however, that the first attempt to develop a 
method for the treatment of correlation was made by V. Fock, 
M. Vesselov, and M. Petrashen [Zh. Eksperim. i Teor. Fiz. 10, 723 
(1940)]. Fock et al. have considered an atom with N core electrons 
and two valence electrons and have written the wave function in 
such a form that the iV-core electrons were represented by a 
determinantal wave function whereas for the valence electrons a 
two-electron function was introduced, thereby allowing them to 
take into account the correlation between the two valence elec
trons. An extensive discussion of this theory may be found also 
in the first paper of Ref. 2. 
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For the various approximations which may be 
obtained from (1.1) we have adapted3 the following 
definitions: 

(1) The first term of (1.1) is the independent-
particle (Hartree-Fock) approximation; 

(2) The function 

* = *o+L/ (2 )(*/), (1.4) 
a 

in which all two-particle correlations are taken into 
account, is called the two-particle approximation; 

(3) The function 

* = *o+L/(2)(*/)+"-+ E fn)(ifl'-™) (1-5) 
ij ijl. . .m 

is called the ^-particle approximation. 

The properties of the function (1.1) were investigated 
in detail3 and will not be discussed here. We mention 
only two important facts: 

(1) The two-particle approximation (1.4) is equiv
alent to a superposition of configurations in which all 
single- and double-substitution configurations are 
included; 

(2) If all terms are included, (1.1) has the form of 
the exact solution of the Schrodinger equation. This 
should be understood in the following way: if we 
expand all many-electron functions in terms of complete 
sets of Slater determinants, (1.1) becomes identical 
with the exact solution of the Schrodinger equation.7 

In the present paper we investigate the two-particle 
approximation. The importance of this approximation 
is evident since pair correlations play an important role 
in several fields of physics, for instance, in the theory of 
atomic structure,8 in the theory of nuclear matter,9 and 
in the theory of superconductivity.10 The purpose of 
the present paper is to determine the equations from 
which the best two-particle approximation may be 
obtained. As is well known, the best independent-
particle approximation may be obtained from the 
Hartree-Fock equations. Those equations were derived 
by Fock1 by varying the expectation value of the energy 
with respect to the one-particle orbitals which occur in 
the determinantal wave function ^o. The basic wave 
function of the two-particle approximation which is 
given by (1.4) consists of N one-particle functions 
<Pi, <P2, ''', <PN (similarly to the Hartree-Fock approx-

7 The proof is given in Ref. 3, Sec. 2. 
8 According to the recent investigations of L. C. Allen and 

H. M. Gladney (to be published), the correlation energy of atoms 
with nuclear charge Z^12 and number of electrons 2V" ̂ 10 , can 
be looked upon as arising mostly from two-electron correlations. 

9 The investigations of R. D. Puff [Ann. Phys. (N. Y.) 13, 317 
(1961)] on the properties of nuclear matter indicate that the 
effects of higher order correlations are small compared to the 
two-particle correlations. 

10 J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. 108, 
1175 (1957). 
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imation), but, in addition to these, it contains also 
%N(N— 1) two-particle functions $12, <t>n, • • •, <J>K-I,N-
The equations for the best one- and two-particle 
functions will be derived by varying the expectation 
value of the energy with respect to the one- and two-
particle functions. It should be emphasized that in the 
derivation of these equations: (1) No orthogonality 
condition will be introduced which restricts the general
ity of the wave function11; (2) No term will be neglected 
in the energy expressions. 

In view of the absence of any restrictive conditions 
the theory presented in this paper may be considered 
as a model, in which all two-particle correlations are 
fully included. If we consider the Hartree-Fock approx
imation as the first step toward the solution of the 
quantum-mechanical many-body problem, then, since 
the model presented here is the logical extension of the 
Hartree-Fock theory, it may be considered as the 
logical second step toward the exact solution of the 
many-body problem. The results presented here are 
valid for any system of fermions which can be described 
by a Hamiltonian given below [Eq. (2.1)]. 

II. THE VARIATION PRINCIPLE 

We consider a system of N fermions and assume 
that its Hamiltonian is of the form 

s=Efl . (»)+!IE»(»i ) , (2.1) 
4=1 i = l j = l 

where Ho(i) is a one-particle operator and v(if) is the 
interaction between the ith. and 7th particle. We assume 
that v(ij) = v(ji) and that v is not an operator. 

We represent the system by the wave function 

*=*o+£ E /<»(*i), (2.2) 
4=1 2 = i + l 

in which all two-particle correlations are included. As 
we see from the definitions of ^0 and f(2)(ij) [Eqs. 
(1.2) and (1.3)] the wave function (2.2) consist of N 
one-particle orbitals <pv <PN and of %N(N— 1) two-
particle functions $12, $13, • • •, </>N-I,N. Our goal is to 
determine the best set of one- and two-particle wave 
functions, which is denned as that which brings the 
energy of the system to a minimum. In order to obtain 
the equations for the best set we apply the variation 
principle. 

Let us denote the expectation value of the Hamil
tonian (2.1) with respect to the wave function (2.2) by 
A, and the normalization integral by B; then the energy 
of the system is j 

E=A/B. (2.3) 

The sum of all subsidiary conditions (which must be 
taken into account when we apply the variation 

11 A general discussion of the orthogonality conditions is given 
in Ref. 3, Sec. 3. 
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principle) multiplied by the appropriate Lagrangian 
multipliers, will be denoted by Eo. According to the 
basic theorem of the variation calculus, the energy 
minimum is determined by the equation 

8(E+E0) = 0, (2.4) 

where d means variation with respect to the one-particle, 
or with respect to the two-particle functions. Consider
ing (2.3), we obtain from (2.4) that form of the variation 
principle which will be used in this paper, 

5A-E&B+B8Eo=0. 

III. THE FORMULAS FOR A, 5, AND E0 

(2.5) 

General formulas for the integrals A and B were 
given in our previous papers.12 Our goal now is to write 
these quantities in such a form that will be convenient 
for obtaining the variations 5A and 8B. The quantities 
A and B are, by definition, given by the formulas13,14 

E f *o 
a J 

*o*fl*oie+E / f»*Hf(ij)dq 

+ E f*(ij)H*«k+T. f*(ij)Hf(ij)dq 

+ £ [f*(ij)Hf(jl)dq+Z I f*(ij)Hf(kl)dq 
ijl J ijkl J 

^Ai+Az+Az+Ai+As+Ae, (3.1) 

B= / * o * M g + £ ho*f(ij)dq 

+ £ /"ffeOSMg+E ff*dj)f(ij)dq 
ij J ij J 

+ E / f*(ij)f(fl)dq+Z 
ijl J ijkl 

f(ij)f(U)dq 

^B1+B2+Bd+B,+Bb+B6. (3.2) 

The formulas for A * and Bi are derived under the follow
ing subsidiary conditions: 

12 They were first given in the second paper of Ref. 2 and may be 
found also in the first paper of Ref. 4. General formulas involving 
correlated wave functions of any order were given in Ref. 3. 

13 Here, and throughout the paper the symbol dq indicates 
integration with respect to all coordinates which occur in the 
integrand of an integral. If the integrand depends on a number of 
variables, and the integration has to be carried out only with 
respect to some of them, this will be indicated explicitly, for 
instance, the symbol dq2u means integration with respect to 
q2, qz and £4, i.e., dq^u^dq^dqzdq^ 

14 Since we consider only the two-particle approximation, we 
have dropped the superscript from the symbol f(ij). 

(1) The one-particle orbitals are orthonormal: 

<Pi*<Pi4q=8ik, (% k= 1, 2, • • •, N); (3.3) 

(2) The two-particle functions are normalized: 

h 

/ 
<l>ij\2dq=l, 

[for all (ij) pairs *', j= 1, 2, • • •, lf\; (3.4) 

(3) The one-particle and two-particle functions are 
orthogonal to each other in the following sense: 

/ 
*.*(l)fc/(l,2)dgis0, 

[for all (ij) pairs s=l,'2, • • •, N, s^i, j~]. (3.5) 

It is easy to show that none of the above conditions put 
a restriction on the total wave function (2.2). It is 
particularly important to realize that the condition (3.5) 
can be satisfied without restricting the generality of the 
total wave function. This can be shown in the following 
way.15 Let us consider an arbitrary two-particle function 
<j)ij° and let us consider the orthogonality projection 
operator ft#(l,2) which is defined in the following way: 

where 
^ • ( l , 2 )^0 ,y ( l )+^ y (2 ) - ^ ( l )%(2 ) , (3.6) 

Otf(l)/(l)= E <Ps(l) [<Ps*(2)f(2)dq2. (3.7) 

Let us now consider the orthogonalized two-particle 
function 

0^(1,2) = [1-0^(12)30^(1,2). (3.8) 

It is easy to see that 0# satisfies the condition (3.5) 
regardless of the form of <^/. Furthermore, it is easy to 
prove that if we replace an arbitrary two-particle 
function 0#° by the orthogonalized two-particle function 
fcj, which is defined by (3.8), then the total wave function 
f(ij) does not change. In formula 

= W(mil2J.<Pi(qi)''^N(qN)4>iMiq^ (3.9) 

Therefore, we can assume, without restricting the 
generality of the total wave function f(ij), that the 
two-particle functions satisfy the orthogonality condi
tion (3.5). 

We proceed now to the presentation of the formulas 
for A and B. Let us introduce first a few notations. Let 

Mab(l ,2)s[^ a( l)^6(2)-^0(2)^(1)] , (3.10) 

0a6c(123)^i:[0a6(12)^(3)], (3.11a) 

&5c(123)=£[pa(l)0bc(23)], (3.11b) 
15 See Sec. 3 of Ref. 3. 
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0a&cd(1234)^l[^a&(12)Mcd(34)], (3.11c) 

^&cd(1234)^l[>o6(12)0cd(34)], (3.11d) 

where A is an operator which makes the functions in the 
square brackets antisymmetric, taking into account 
that <j> and u are antisymmetrized already. We introduce 
the Hartree-Fock type potential function and exchange 
operator 

Vs(l)^fv(l,2)\<ps(2)\*dq2, (3.12) 

^ s ( l ) / ( l ) ^y , ( l , 2 )^ ( l ) ^* (2 ) / (2 ) Jg 2 , (3.13) 

where / is an arbitrary function. Let 

-EB 
ij J 

( 1 2 ) 5 ^ ( 1 2 ) ^ ( 1 , 2 ) ^ 1 2 , (3.22) 

(3.14) 
5 = 1 

n n n 

Hiji...m(l, 2, • • •») = £ Biji...m(s)+i £ X > 0 M ) , 
s=l s=l t=l 

( » = 2 , 3 , --N), (3.15) 

Hiji...m(l, 2, • • 'n)=Hiji...m(l, 2, • • •, n)+€iji...m—E, 

(n=2,3,---N), (3-16) 
where 

2V JV N 

e*j7...»s2 Z\«+i £ E ^s*> (s,t9*ijl---tri), (3.17) 

and 

2"a6= / <pa*HQ<phdq, (3.18) 

Uab^jv(l,2)L\ ^&(2)12| *a(l)|» 

- ^ ( l ) ^ 6 * ( 2 ) ^ a ( 2 ) ^ a * ( l ) ] ^ 1 2 

= \ <Pa*lVh-A{]<padq, (3.19) 

and £ is the total energy E=A/B. 
As we see from (2.5) we shall need the quantities A 

and J3 in the combination A—EB. Therefore, we give 
the formulas for the integrals Ai—EBi ( i = l , •••6) . 
Taking into account the subsidiary conditions (3.3)-
(3.5), we obtain, from the formulas (2.2)-(2.4), 
(4.5)-(4.7), and (4.11)-(4.13) of the first paper of Ref. 4, 

Ai-EBt=Y, | [tifilfiHiiiUMl&dqn 
ij J 

+ E * ( « / - £ ) , (3-23) 
ij 

At-EBt=j: h / 0a*(12)w*(3)ffi/,(123)^,(123)<rg, 
ijl J 

(3.24) 

At-EB^Y, t / W*(12)«M*(34)flaH(1234) 

X$w(1234)<fy. (3.25) 

Our next task will be to express the conditions 
(3.3)-(3.5) in the form of subsidiary conditions for the 
variation principle (2.5). In order to do this we intro
duce the Lagrangian multipliers —X^ and —Eik/2 for 
the conditions (3.3) and (3.4), respectively. Following 
Fock et al.1* we treat the orthogonality condition (3.5) 
in such a way that we multiply each of the orthogonality 
integrals by a Lagrangian multiplier which is a function, 
and integrate over all space. We must also remember 
that since the one- and two-particle functions are, in 
general, complex, we shall have to vary each one- and 
two-particle function and their complex conjugate 
independently.17 This can be done easily in the expres
sions (3.20)-(3.25) since these contain the functions and 
their complex conjugate in a symmetrical fashion; the 
same is true for (3.3) and (3.4). However, (3.5) is not 
symmetrical in <ps and <p8*; therefore, we shall have to 
consider also the conjugate complex of Eq. (3.5) as an 
independent condition. We obtain, therefore, 

N f Eih /", . 
Eo=— \ £ X«b I <Pi*<Pkdq—Y,— / \<t>ik\2dq 

i,k=l J ik 2 J 

= / 
E E /Xtf.*(2)v.*(l)0«(12)rfg1j 

(s*ij) 

; f\i}s(2)tps(l)4>ii*(l,2)dq12, (3.26) 

A1-EBi=Z TS8+i £ U.,-E, (3.20) 

A,-EB2=j: i [M«*(12)#tf(12)*y(1,2)^18, (3.21) 
ij J 

- E E 
ji s = 1 

where X#g(g) is a Lagrangian multiplier. The symbol 
£ # means summation over all particle pairs. 

16 V. Fock, M. Vesselov, and M. Petrashen, Zh. Eksperim. i 
Teor. Fiz. 10, 723 (1940). 17 See, for instance, E. M. Corson, Perturbation Methods in the 
Quantum Mechanics of N-Electron Systems (Hafner Publishing 
Company, New York, 1951), p. 132. 
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IV. THE DERIVATION OF THE EQUATIONS FOR 8 8 
THE ONE-PARTICLE FUNCTIONS A2-E B2 

W e proceed now to the der iva t ion of t he equat ions 
for t he one-part icle functions <ph <p2, •••, W . T h e ^ £ / '[^m*(l)]^*(2)5wy(12)fe(12)^12 

equations will be derived from the variation principle, i^m J 
Eq. (2.5). Let us consider first 8A—E8B. We obtain . . r ^ -. 
the equation for <pm (w=l , •••, N) by taking the +E£/M»i*(12) -#»/(12) Ly(12)^i2. (4.2) 
variation with respect to <pm*. Denoting the variation ij J L§<pm* J 
with respect to <pm* b y 8/8<pm* and the var ia t ion of j n o r d e r to obta in the second t e rm of the above 
<pm* itself b y 5<pm*, we obta in , on the basis of the expression we rewri te the whole integral in the following 
formulas (3 .20)-(3.25) , w a y : 

8 8 
Ax-E JBi 

= / 5^(1)^0(1)^(1)^1 

§1^/(12)^(12)^(12)^ 

= [fii*(12)lHQ(l)+ £ ( F s ( l ) - ^ ( 1 ) } 

+ ^ ( 1 2 ) + | 6 , i - | £ ] ^ y ( 1 2 ) ^ 1 2 . (4.3) 

/

^ We observe that in the square bracket only the sum 

£<Pm*(l) 2 C^«(l) — v4s(l)]<^w(l)^i, (4.1) over s and the e# depend on <pm*. Taking into account 
- 1 (3.12), (3.13), (3.17), (3.18), and (3.19), we obtain 

E i /«</*(i,2) 
r 5 

L^* 
-#*(1,2) Ly(l,2)<fy 

= E I Putin) [ F m ( l ) - ^ m ( l ) ] ^ y ( 1 2 ) ^ + ( £ I Ui*4>ijdq) Tmm 

J 8<pm* \i]^m J /8<pm* 

+ Z ( E i / Vij*<t>ijdq) Ur> 

ijy£m 
= E /Mtf*(12)B( l ,3 ) [8 P w *(3) ¥ > 1 1 , (3 )0y(12) -« ¥ . w *(3)* . m ( l )* t f (32) ]d ? +( E i / «,/<M<7 

ijr^m 

X [6pM*(l)nQ(l)<pm(l)dq1+ E ( E } [ u^frjdq) I 8<pm*(l)lVs(l)-As(l)-]<pm(l)dqi. (4.4) 

We obtain similarly 

4 , - E £ 3 

= E I /"*«*(1,2)1" -5«(12) "L(12)i? 

= E /*«*(12>(13)[8«>M*(3)^m(3)M<y(12)-8*)B*(3)*>«(l)Attf(32)]dj1M+( E i / M W ? ) 

X / 8*»»*(l)Fo(l)*»»(l)d?i+ E ( E I l4>W*ijdq) [iVS(l)\y~.(l)-A.(l)lVm(l)dqi, (4.5) 
«/ s=l \ij?±s,m J J J 
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8 8 
-At-E B* 

5^>w* 8<pm-

= E i f*a*(12)\ -Hij(12)\ij(l,2)dq12+ -Xh« 
a J L5<pm* J d(p 

= E /*«*(12>(13)C8»>m*(3)¥>1I,(3)0«(l,2)-«VB*(3)Vw(l)^(32)]rfg1„+(E I [\4>ii\*dq) 

X / 5<pm*(l)H0(l)<pm(l)dqi+ E ( E if\<t>ij\2dq)fs<pm*(l)lVs(l)-As(l)^m(l)dqi, (4.6) 

8 8 
-A6-E B5 

* 8<Pm* 8<pt 

= 1 1 U^(12)6^w*(3)5,ym(123)^m(123)Jg+E i /"*<y*(12)^*(3)r J?tf,(123)lfoz(123)<fyi28. (4.7) 

In order to calculate the quantity in the square bracket of (4.7) we recall the definition of Hi3i given by (3.14)-
(3.16). Taking into account that Hyi depends on <pm* only through the Hartree-Fock potentials and exchange 
operators and through e#?, we obtain 

8 
—ff*,(123) 

Ld<Pm* 
Ei/*</*(12)^,*(3) 
ijl 

U>iji{l2Z)dq 

=E h UaWX) [#o(i)+ E {v.(i)-^.(i)}+»(i2)]*tfi(i23)rf?12,+E- Uw*iink 0*y*-£) 
HI J 8<pm* s=i iji 3 ! J 8<pm* 

- E 4 / **i*(123M14)^ ~ Uin%mdq) 
ijl^m J \ijl^m 31 J I 

xLm*(l)iJo(l)^(l)^i+lf E ™ /*^*^y^V^«^l)C^Xl)-^.(l)]^(l)^i- (4.8) 
y *=i W?^,m3! 7 / J 

It is evident that we can calculate the variation of A$—EBQ in a similar fashion. We obtain with simple 
manipulations 

8 8 
-At-E B% 

8(pm* 8ipt 

= £ i/**y*(12)^*(3)^m*(4)£r^w(1234)^ ib l f l(1234)^+ E * Utf*i*(1234)i>(15) 

X[«^m*(S)^m(S)^i(1234)-5^m*(S)^m(l)^y«(S234)]^+( E - <t>im*$mdq) 
\ijklpSm 4 ! 7 / 

X /"^»*(l)^o(l)^m(l)^i+ E f E - UimHimdq) f8^{\)IVS{\)-As{\)'}ipm(\)dq1. (4.9) 
J «-l \ijklj*s,m4:l J J J 

Having calculated 8A — E8B the quantity which we need for the equation (2.5) is B8Eo. EQ is given by (3.26). By 
forming the quantity B8EQ we realize that B is a constant at every stage of the calculations. Therefore, we can 
incorporate B into the Lagrangian multipliers X ,̂ Eiky and Xtfcs(g). In other words, we could eliminate B by denning 
a new set of Lagrangian multipliers defined as B\i1c, BEiki and B\iks(q). In order to keep the notations as simple as 
possible, we do not introduce new symbols, but simply consider B being incorporated into the Lagrangian multi-

file:///ijklpSm
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pliers. We obtain this way 

8 N \mk r r 
B8E0=B E0=-T, / « ^ » * ( l ) ^ ( l ) ^ i - E /X<y„*(2)5^TO*(l)^(l,2)rfg12. (4.10) 

8<Pm* k==l 2 J ij^mj 
We are ready now to write down the equation for the one-particle orbital <pm. From (4.1), (4.2), (4.5), (4.6), 
(4.7), (4.9), and (4.10) we obtain, by introducing the notations Em=Xmm/2 and Amfc=Am&/2, 

8 8 8 
-A - E B+B E0 

8<pm* 8<pm* 5^>m* 

= / 8<pm*(l)\Hm(l)<pUl)+Zm(l)-Em<pm(l)- Z \mk<pk(l)- E f\iim*(2)<l>ij(12)dq2']dq1=0, (4.11) 
J L k=l ij^m J J 

where the operators Hm and Zm will be given below. In the equation above, 5<pm* is a completely arbitrary function. 
Since the integral must be zero for all 8<pm*, the quantity in the square bracket must be zero. From this we obtain 
the equation for the one-particle function <pm, 

Hm(l)<pm(l)+Zm(l) = Em<pm(l)+ E W * ( l ) + E [*Vm*(2)<l>iiO-2)dq2, (4.12) 

and, of course, we obtain such an equation for m— 1, 2, • • •, N. We can easily verify that the operator Hm may be 
written in the following form: 

Hm(l) = SmHo(l)+Vm(l)-Am(l), (4.13) 

where Sm will be defined below, Vm(l) is a potential, and Am(l) is an exchange operator. They are defined in the 
following way: 

P»(1)=E SumVu(l)+ E ( A(13)[<^*(32)^ 

+ £ i / »(14)0«,*(423)^,(423)rfgm+ £ i [<j>m*(5234)$ijkl(5234)v(15)dqMis, (4.14) 

and 

i m ( l ) / ( l ) = I ) .Sw4«(l)/(1)+ E { ( ^ 1 3 ) [ M * ; ( 1 2 ) ^ / ^ ^ 

+ £ i/$«i(123)fcf l*(423Ml4)/(4)d?,M+ £ | U i f t I(1234)^,*(S234)»(l.S)/(5)^M , , (4.15) 

where Fw and .4 w are the Hartree-Fock potential function and exchange operator, respectively [[defined by Eqs. 
(3.12) and (3.13)]. The constants Sm and Sum which appear in (4.13), (4.14), and (4.15) are defined by the 
relationship 

3«07...p5S 1+ E 11 / <l>ij*Vijdq+i / ms*4>ijdq+? / |<t>ij12dq 
»/(5^a,/3,...,p) I 7 J 7 J 

+ E — <t>iji*4>ijidq+ E — \4>im*$wdq- (4.16) 
i2l&a,P,y,'--,p) 31 J »/H(5*x,p\Y,...,p) 41 J 

Finally, the function Zm is given by the formula 

2m(l)= E [ <pj*(2)Hmj(l,2)<j>mj(12)dq2+ E i f<l>if(32)Hijm(321)$ijm(321)dq2Z 

+ £ |/"^/(42)^*(3)i?»m(4231)^^m(4231)^234 . (4.17) 
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Having defined all operators in Eq. (4.12), a few remarks are in order about the limits of the summations which 
appear in the expression above. Double summations like Etf a r e to be taken for all orbital pairs. The triple 
summation X#z which appears in (4.14) as well as in (4.15), should be carried out as follows. The £ # includes all 
orbital pairs. For each (ij) pair, the summation over I means 

E = £ ( ^ * ' i ) - (4.18) 
i z=i 

Finally, J^ijki means summation for all (ij) pairs; for each (ij) pair the summation over k and I means summation 
over all pairs except (ij). If certain indices are excluded from a summation, this is indicated explicitly. 

Besides the quantities discussed above, Eq. (4.12) contains also the unknown Lagrangian multipliers \mk and 
^ijm(q)- It will be shown below that these can be expressed in terms of the one- and two-particle functions. 

V. THE DERIVATION OF THE EQUATIONS FOR THE TWO-PARTICLE FUNCTIONS 

Our next task will be the derivation of the equations for the two-particle functions <£#. In the derivation we shall 
use Eq. (2.5) again, this time taking the variations with respect to the two-particle functions. We obtain the 
equation for 4>a by varying with respect to </>#*. We denote the variation of a quantity with respect to </>#* by 
d/5(j)ij* and the variation of <£#* itself by 5<£;y*. From the formulas (3.20)-(3.25), we obtain 

8 8 8 8 
-Ai-E Bx= A2-E £ 2 = 0 , (5.1) 

\>a •* <50tf* 5<foy* 8 $ i * 

K a r 
• -A,-E £ 3 = i / 5^ / (12)5 ,7(12^(12)^ , (5.2) 

& & r 
Ai-E £ 4 = § / 5 ^ / ( 1 2 ) ^ ( 1 2 ) ^ ( 1 2 ) ^ , (5.3) 

•M-Err—Bi= £ \ \ W(12)p,*(3)fftf,(123)&yi(123)<*g, (5.4) 
ij J P>ij 

Vi] 

* 8<j>i? w 

U-E * 
A6-E—BQ= E i/^^ewj/i^Ca^waaa^^Kws^. (5.5) 

8<f>ij 

Next we calculate B8E0. Here we treat B again in such a way as we have done in the derivation of the one-particle 
equations, i.e., we incorporate the constant B into the Lagrangian multipliers. We obtain, by taking the variation 
with respect to ##*, 

8 En r N r 
B £ 0 = (M>ii*)4>ijdq-T, \ijs(2)<ps(l)8<l>^(12)dq. (5.6) 

84ns* 2 J *-i J 

As was mentioned above, in the derivation of the expressions (3.21)-(3.25) we have assumed that the two-
particle functions are antisymmetric. We can take into account this fact by writing the variation of <£#* in the form 

8$ij*(12) = 8<Pij*(12)-8<Pij*(21), (5.7) 

where 8(pij* is completely arbitrary. On putting (5.7) into the expressions (5.2)-(5.8), we obtain, for the variation 
principle (2.5), 

5 /{ /j /» 

A-E B+B E0= /5^/(12)[JB- i J-(12)^(12)+Z iy(12)-£ t^ i(12) 
8$ ij* 8<j)ij* 8<f>ij* J 

- Z {X<y.(2)^.(l)-X tf.(l)^(2)}]dg«=0, (5.8) 
5 = 1 

where Hi3 and Zi3- are given below. Since 5<pij* is an arbitrary function, it follows from the above equation that the 
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quantity in the square bracket must be zero. From this we obtain the equation for 0vy 

Hij(12)+ii(12)+Zii(12) = EMl2)+ E CX<y.(2)^(l)~X<,-.(l)^(2)]. (5.9) 

The operator Hij and the function Z# are defined as follows: 

^ • ( 1 2 ) = Zr t 7 ( l )+F , y (2 )+K12) , (5.10) 

where #,-/(!) was given by (3.14); and 

Ztf(12) = JItf(12)Aitf(12)+:C ^*(3)fr^(123)^yi(123)dg,+ E \ / «*i*(34)^,(1234)faki(1234:)dqH. (5.11) 

Similarly to the equation for the one-particle functions, Eq. (5.9) also contains the unknown Lagrangian multi
pliers X#s(g). In the next section we shall show how these multipliers can be expressed in terms of the one-particle 
and two-particle functions. 

VI. THE ELIMINATION OF THE LAGRANGIAN MULTIPLIERS 

The equation system given by (4.12) and (5.9) contains, besides the one- and two-particle functions, also the 
unknown Lagrangian multipliers \mk and X#«(g). In this section our goal is to express these multipliers in terms of 
the one- and two-particle functions. We start with Eq. (5.9). Let us introduce the notation 

Xz-y(12)^i?,y(12)^y(12)+Z,y(12) . (6.1) 

Let us introduce this quantity into (5.9), multiply the equation from the left by <^*(1),18 and integrate over glt 

Taking into account that cpt is orthogonal to ##, we obtain, for t = s, 

X t*(2)= f <p*(l)Xij(12)dq1+ E f\M<pt(2)<p*(l)dqi. (6.2) 

Introducing Q»y(l) with the definition (3.7) we obtain, by putting (6.2) back into Eq. (5.9), 

X,y(12) = £ ^ y ( 1 2 ) + ^ y ( l ) X , y ( 1 2 ) + E ^ ( 2 ) % ( l ) X ; y , ( l ) - E X,y s( l)^(2). (6.3) 
* = 1 5 = 1 

Let us multiply now this equation from the left by <pM*(2) and integrate over q2. We obtain, for u=s, 

-X</.(1)= f <PsH2)Xij(12)dq2- fnij(l)Xij(12)<p^(2)dq2-aij(l)\ijs(l), (6.4) 

and putting — X#«(l), given above, into the last term of Eq. (6.3), we obtain 

Xt-y(12) = £ ^ 7 ( 1 2 ) + [ ^ (6.5) 

where we have used the condensed notation (3.6). The Lagrangian multipliers are eliminated thereby from Eq. 
(5.9). Instead of (5.9) now we have for the two-electron function the equation (6.5). 

We proceed now to eliminate the Lagrangian multipliers from the one-particle equation (4.12). Introducing 
the notation 

I „ ( l ) s ^ ( l ) ^ ( l ) + Z B ( 1 ) , (6.6) 
(4.12) takes the form: 

I m ( l ) = £ m ^ ( l ) + E W ( l ) + E \\iJJ(2)4>ij(\2)dq2. (6.7) 
ky^m ij?£m J 

For X#w*(2) we have already derived an expression above. Comparing Eqs. (5.9) and (6.5) we see that 

X*. (2)=J ^ * ( 3 ) X ; y ( 3 2 ) ^ 3 - | E <pt(2) f <Ps*(3)^(4:)Xij(34)dqu. (6.8) 

(/ 9*ij) 
J / = l , ••-,N,t7*ij. 
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Putting the complex conjugate of (6.8) into (6.7), we get 

Xm(l) = Em<pm(l)+Z W * ( l ) + E J<l>iJ(12)X^(32)<pm(3)dq2Z. (6.9) 

Multiplying this equation from the left by <p*(l) (t?*m) and integrating over qh we get 

X„*= / <pk*(l)Xm(l)dqi- E f cp^(l)<t>ij(12)X^(32)cPm(3)dq, (6.10) 
J J9^m,k J 

and by putting (6.10) back into (6.9) we obtain 

Xm(l) = Em<pm(l)+ E <pk(l) [vk*(3)Xm(3)dqz- E E **(1) f <Pk*(3)<t>kj(32)Xkj*(42)<pm(4)dq2U 
ky^m J ky^m J9^m,k J 

+ E l4>n(12W&2)«>m($dq„. (6.11) 

Let us introduce the following operators: 

u.(l)f(l)=v.(l)JV*(2)f(2)dqt, (6.12) 

«.«(1)/(1)= U.t(U)X,t*(32)f(3)dqu. (6.13) 

Using these notations, (6.11) can be written in the form 

Xm(l) = EmVm(l)+ Z <*t(l)XmQ.)- L £ « t ( l ) « M ( l ) v » ( l ) + E «a(1)^«(1) • (6.14) 
Ky^m k^m jy^m,k ijy^m 

Since this equation contains only the one- and two- and 
particle functions, the elimination of the Lagrangian 
multipliers is thereby completed. X#(12) = Etf0tf(l,2)+O#(12)X#(12), 

[for all (ij) pairs, i, j = 1, 2, • • •, tf]. (7.3) 
VII. DISCUSSION 

We have iV equations (7.2) for the one-particle orbitals 
A. Summary of the Resul ts a n d t h e o r b i t a l p a r a m e t e r s El, Eh . . . , EN; and we 

We have considered an TV-particle system with the have %N(N—1) two-particle equations (7.3) for the 
Hamiltonian (2.1). We have written the approximate two-particle functions fa, 4>u, ••• , ^AT-I.JY and the 
wave function of the system in the form orbital parameters En, E1Z, • * •, EN-!,N. Both the one-

_ t(2)/"\ n i\ anc* two-particle equations contain [in the operators 
i ; f ^j)' ( } XM) and X#( l ,2 ) ] also the total energy E; this is 

connected with the solutions of the equations through 
which we have called the two-particle approximation the relationship E=A/B [Eq. (2.3)]. 
because it contains all two-particle correlations. We 
have investigated how the best two-particle approxima- B Self-Consistent Solution of the Equations 
tion can be obtained. In order to obtain the equations 
which determine the best two-particle approximation, Let us introduce the operators 3m(l), Zm(l) and 
we have applied the variation principle. By varying the Jff# (1,2), 2#(1,2) with the following definitions: 
total energy [ the expectation value of the Hamiltonian 
with respect to (7.1)1 with respect to the one- and fr _ n v^ -1*7 _L v v 1 ,, A V 7, n £\ 
two-particle wave functions, and taking into account k==1 ky£m ^mk ij9*m 

the subsidiary conditions we have obtained the following & ̂ m) 

equation system: N 

Xm(l) = Em<pm(l)+ E <0k(l)Xm(l) ~"° "" H i 
Z m = - [ 1 - E m~]Zm, (7.5) 

8a=t\-toifiRii, (7.6) 

^ - [ 1 - Q , 7 ] Z , 7 . (7.7) 

+
l^Jbii(1)<PmW ' (m== 1} 2' ' " N ) ' ( 7 ' 2 ) Using these notations, the equations (7,2) and (7.3) 

~ E E «*(l)«jy(l)pm(l) 
kj^m 37^m,k 
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may be written in the following form: 

Sm(l)cpm(l) = Em<pm(l)+Zm(l), 

(m=l,2, ..-TV), (7.8) 

5«(12)0<y(12) = £<i0<y(12)+2<y(12), 
[for all (ij) pairs, i, j= 1, 2, • • •, TV]. (7.9) 

This equation system may be solved in the following 
way. We may start with an orthogonal set of one-
particle functions which is chosen on the basis of 
plausible physical arguments.19 Let us denote this set 
by <p(i). Then, using <pa) we may calculate two-particle 
functions $# one at a time for each pair. This is possible, 
since if we consider only one pair function at a time, 
(7.9) reduces to 

5 ^ ( 1 2 ) ^ ( 1 2 ) = £^y(12) -^ - (12) M <y(12) 
+ 0 ^ ( 1 2 ) ^ ( 1 2 ) ^ ( 1 2 ) , (7.10) 

where the operators depend only on the set <p(i). After 
that, we calculate the set of two-particle functions 
taking into account all of them simultaneously. In 
other words, we solve the equations (7.9). Let us 
denote the set of solutions by ^>(i). Our first approxima
tion is therefore the combined set 

V ( 1 ) ->(« , ( ! ) ,* ( ! ) ) . (7.11) 

Next we form the operators Hm(l) and Zm(l) with the 
sets p(i), <I>(i) and compute from the equations (7.8) a 
new set of one-particle functions which we denote by 
<p(2). Using these we calculate from the equations (7.9) 
a new set of two-particle functions, exactly in the same 
way as we have calculated <&(i). We denote the new 
set of two-particle functions by <I>(2). At the end of this 
cycle we shall have the second approximation given by 
the combined set 

V (2)-»(«>(2),4> (2)) . (7.12) 

We continue this procedure until we find that 

(p(n-l)= <P(n), 

0 (*_i) = 0 ( „ ) , (7.13) 

in which case our system is self-consistent. By putting 
(P(n) and <I>(n) into the trial function (7.1), we obtain 
the wave function of the system including all two-
particle correlations. All properties of the system, 
including the total energy may be computed easily by 
using the wave function (7.1). 

19 I t is, in general, a mistake to start with the solutions of the 
Hartree-Fock equations. This can be seen from the fact that the 
operators which occur in the equations for the one-particle 
functions [Eq. (7.8)] are, in general, very different from the 
Hartree-Fock Hamiltonian operator. We have arrived at this 
conclusion by investigating the electronic correlation in the Be 
atom using the approximation presented here [L. Szasz, Phys. 
Letters 3, 263 (1963), and to be published]. In other words, the 
best one-particle functions in the two-particle approximation are, 
in general, different from the Hartree-Fock one-particle functions 
to such an extent that it is an extremely poor approximation to 
start calculations with these. 

C. General Discussion of the Structure 
of the Equations 

As is well known, the independent-particle (Hartree-
Fock) approximation is characterized by the fact that 
the problem of calculating the wave function for an 
i\f-particle system is reducible to the solution of N 
one-particle equations (the Hartree-Fock equations). 
In the two-particle approximation, in which we have 
the wave function (7.1), we must calculate, besides the 
one-particle functions also two-particle functions; 
therefore, our task is to solve a set of one-particle 
equations and a set of two-particle equations. The 
interesting point is, however, that even in this approx
imation, in which correlation is taken into account, the 
one-particle aspect of the problem does not disappear; 
on the contrary, even after we introduced correlation, 
a part of the problem is still the solution of a set of 
one-particle equations. In other words the concept of 
one-particle orbitals and one-particle orbital energies is not 
exclusively connected with the independent-particle approx
imation. After introducing correlation, we still have the 
one-particle orbitals and one-particle orbital energies to 
calculate, but these are not the solutions of the Hartree-
Fock equations any more, but the solutions of the more 
complicated equations (7.8). [[It is easy to show that 
if we neglect the correlation, i.e., if we put all two-
particle functions equal to zero, then (7.8) reduces to 
the Hartree-Fock equations.] The difference between 
the independent-particle model and the two-particle 
approximation is that in the two-particle approximation 
we have to solve, in addition to the set of one-particle 
equations, also a set of two-particle equations for the 
functions which represent the correlation. 

Another interesting feature of the equations (7.8) 
is that all terms which occur in the operator Hm 

except the term containing HQ may be described as 
potentials and exchange operators. In other words, 
whereas, in the Hartree-Fock approximation, the equa
tions for the one-particle functions are characterized by 
the presence of the Hartree-Fock potentials (and 
exchange operators), in the two-particle approximation 
the equations for the one-particle orbitals are character
ized by the presence of the generalized potentials (4.14) 
and of the generalized exchange operators (4.15). As 
we see from (4.14) the first term in the generalized 
potential Vm is the Hartree-Fock potential (multiplied 
by the constant Sum which is equal to 1 if there is no 
correlation). The fact that the other terms are also 
potentials can be seen easily by replacing the two-
particle functions everywhere by the corresponding 
Slater determinants. For instance, if <j>%3 a n d 4>n a r e 

replaced by mj and fiji, respectively, then 

\ \ <j>in* (423)&,z (423Ml4)rfg2M-> 

Vi(l)+Vj(l)+Vl(l), (7.14) 
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where the Vl
,s are the Hartree-Fock potentials denned 

by (3.12). Also, it is interesting to note that besides 
the term 

/"*(13)|&,(32)|2<fy82, (7.15) 

which occurs in (4.14) and which may be interpreted 
as the potential arising from the two-particle functions, 
the two-particle functions are responsible also for other 
potential terms which cannot be interpreted in a simple 
way. In other words if we would like to write down the 
potential for the one-particle equations intuitively, 
taking into account the presence of the two-particle 
functions, we would certainly include (7.15); however, 
as we see from (4.14) there are also other terms in the 
potential in which the two-particle and one-particle 
functions occur in a nonsymmetrical way20 and which 
cannot be derived from simple considerations. 

D. Concluding Remarks 

As was mentioned in the introduction and as it is 
evident from the derivations, the results presented in 
this paper can be applied—in principle—to any 
system of fermions. However, the successful application 
of the model will depend on whether the equations (7.8) 
and (7.9) can be solved for a given, particular type of 
interaction. The practicality of the method has been 
established for Coulomb interactions, by using the 
method for the investigation of electronic correlation 
in the Be atom. Using Hylleraas type functions for the 

20 For instance, in the potential containing fan* and faji. 

two-particle functions representing the correlation 
between the two Is and between the two 2s electrons 
of the Be atom we have shown that 80% of the correla
tion can be taken into account by a 10-parameter 
variational wave function. It is important to note 
however, that this application is not completely 
satisfactory, since we have not solved the two-particle 
equations (7.9) exactly. In the case of atoms, the two-
particle equation (7.9) is a six-dimensional equation 
which can be reduced to a three-dimensional equation 
by separating out the angular part of the two-particle 
wave functions. However, at the present time, there is 
no possibility for the exact solution of a three-dimen
sional equation. In the calculations mentioned above 
we have written the two-particle functions as simple 
analytical expressions, containing variational param
eters, and calculated these parameters from the energy 
minimum principle. This procedure however is only a 
slowly converging approximation to the exact solution 
of the equations (7.9). 

Whether the method can be applied in nuclear 
physics will depend on whether the equations (7.8) 
and (7.9) can be solved for the short-range, "hard-core" 
type interactions. The main problem probably will be 
the solution of the one-particle equations (7.8). In this 
case the solution of the two-particle equations (7.9) 
perhaps may be carried out by introducing as new co
ordinates the center-of-mass of the two-particles and 
their relative distance. This way the equations would be 
reduced to one-dimensional equations. Application of 
the model to various problem^ is now being carried out 
by this writer and the results will be presented in 
later publications. 


